Amino acid residues outside of the pore region contribute to N-type calcium channel permeation.
نویسندگان
چکیده
It is widely believed that the selectivity of voltage-dependent calcium channels is mainly controlled by amino acid residues contained within four p-loop motifs forming the pore of the channel. An examination of the amino acid sequences of high voltage-activated calcium channels reveals that their domain III S5-H5 regions contain a highly conserved motif with homology to known EF hand calcium binding proteins, hinting that this region may contribute to channel permeation. To test this hypothesis, we used site-directed mutagenesis to replace three conserved negatively charged residues in the N-type calcium channel alpha1B subunit (Glu-1321, Asp-1323, and Glu-1332) with positively charged amino acids (lysine and arginine) and studied their effect on ion selectivity using whole cell and single channel patch clamp recordings. Whereas the wild type channels conducted barium much more effectively than calcium, the mutant displayed nearly equal permeabilities for these two ions. Individual replacement of residue 1332 or a double substitution of residues 1321 and 1323 with lysine and arginine, respectively, were equally effective. Disruption of the putative EF hand motif through replacement of the central glycine residue (1326) with proline resulted in a similar effect, indicating that the responses observed with the triple mutant were not due to changes in the net charge of the channel. Overall, our data indicate that residues outside of the narrow region of the pore have the propensity to contribute to calcium channel permeation. They also raise the possibility that interactions of calcium ions with a putative calcium binding domain at the extracellular side of the channel may underlie the differential permeabilities of the channel for barium and calcium ions.
منابع مشابه
The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel.
The epithelial Ca(2+) channel (ECaC), which was recently cloned from rabbit kidney, exhibits distinctive properties that support a facilitating role in transcellular Ca(2+) (re)absorption. ECaC is structurally related to the family of six transmembrane-spanning ion channels with a pore-forming region between S5 and S6. Using point mutants of the conserved negatively charged amino acids present ...
متن کاملControl of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...
متن کاملMolecular determinants of high affinity phenylalkylamine block of L-type calcium channels.
The high affinity phenylalkylamine (-)D888 blocks ion currents through L-type Ca2+ channels containing the alpha 1C subunit with an apparent Kd of 50 nM, but N-type Ca2+ channels in the pheochromocytoma cell line PC12 are blocked with a 100-fold higher Kd value of 5 microM. L-type Ca2+ channels containing alpha 1C subunits with the site-directed mutations Y1463A, A1467S, or I1470A in the putati...
متن کاملPore waters regulate ion permeation in a calcium release-activated calcium channel.
The recent crystal structure of Orai, the pore unit of a calcium release-activated calcium (CRAC) channel, is used as the starting point for molecular dynamics and free-energy calculations designed to probe this channel's conduction properties. In free molecular dynamics simulations, cations localize preferentially at the extracellular channel entrance near the ring of Glu residues identified i...
متن کاملPermeation through the CFTR chloride channel.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein forms a Cl(-) channel found in the plasma membranes of many epithelial cells, including those of the kidney, gut and conducting airways. Mutation of the gene encoding CFTR is the primary defect in cystic fibrosis, a disease that affects approximately 30 000 individuals in the United States alone. Alteration of CFTR function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 8 شماره
صفحات -
تاریخ انتشار 2001